Corrigé du baccalauréat TS Métropole-La Réunion 22 juin 2018

EXERCICE 1

1. La largeur de l'arc de chaînette est égal à 2x et sa hauteur est égale à $\frac{1}{2}(e^x + e^{-x} - 2)$.

Le problème étudié revient à résoudre l'équation $\frac{1}{2}(e^x + e^{-x} - 2) = 2x$

$$\frac{1}{2}(e^x + e^{-x} - 2) = 2x \iff e^x + e^{-x} - 2 = 4x \iff e^x + e^{-x} - 2 - 4x = 0$$

- 2. a. Pour x > 0, $x\left(\frac{e^x}{x} 4\right) = x \times \frac{e^x}{x} 4x = e^x 4$ donc f(x) peut bien s'écrire sous la forme
 - **b.** $\lim_{x \to +\infty} \frac{e^x}{x} = +\infty$ par croissance comparée, donc par somme puis produit,

$$\lim_{x \to +\infty} x \left(\frac{e^x}{x} - 4 \right) = +\infty; \lim_{x \to +\infty} e^{-x} = 0$$

Par somme, on obtient $\lim_{x\to +\infty} f(x) = +\infty$ **3. a.** $f'(x) = e^x - e^{-x} - 4$

- - **b.** $f'(x) = 0 \iff e^x \frac{1}{e^x} 4 = 0 \iff \frac{(e^x)^2 4e^x 1}{e^x} = 0 \iff (e^x)^2 4e^x 1 = 0.$
 - **c.** Si on pose $X = e^x$ alors $(e^x)^2 4e^x 1 = 0 \iff X^2 4X 1 = 0$

 $\Delta = 16 - 4 \times 1 \times (-1) = 16 + 4 = 20 > 0$ donc l'équation admet deux solutions :

$$X_1 = \frac{4 - \sqrt{20}}{2} = \frac{4 - 2\sqrt{5}}{2} = 2 - \sqrt{5} \approx -0.24 < 0 \text{ et } X_2 = 2 + \sqrt{5} \approx 4.24 > 0$$

 $e^x = 2 - \sqrt{5}$ n'a pas de solution car $e^x > 0$ et $e^x = 2 + \sqrt{5} \iff x = \ln(2 + \sqrt{5})$.

Donc f'(x) s'annule pour une seule valeur égale à $\ln(2+\sqrt{5})$

a. On obtient le tableau de variations suivant :

x	$0 \qquad \ln\left(2+\sqrt{5}\right)$	+∞
f(x)	$0 \qquad \qquad f\left(\ln\left(2+\sqrt{5}\right)\right)$	+∞

avec
$$f(0) = 1 + 1 - 0 - 2 = 0$$

et $f(\ln(2 + \sqrt{5})) \approx -3.3$

- **b.** Sur $[0; \ln(2+\sqrt{5})]$, f(x) < 0 donc l'équation f(x) = 0 n'a pas de solution.
 - Sur $[\ln(2+\sqrt{5}; +\infty)]$, f est continue et strictement croissante.

$$0 \in \left[f(\ln(2+\sqrt{5})); \lim_{x \to +\infty} f(x) \right[\operatorname{car} f(\ln(2+\sqrt{5})) \approx -3,3 < 0 \text{ et } \lim_{x \to +\infty} f(x) = +\infty$$

D'après le corollaire du théorème des valeurs intermédiaires, l'équation admet une unique solution α .

5.

-	m	a	b	b-a	f(m)	
		2	3	1		
	2,5	2	2,5	0,5 > 0,1	≈ 0,26 > 0	
	2,25	2,25	2,5	0,25 > 0,1	≈ −1,4 < 0	
	2,375	2,375	2,5	0,125 > 0,1	$\approx -0.66 < 0$	
	2,4375	2,4375	2,5	0,0625 < 0,1	$\approx -0.22 < 0$	

b. Grâce à cet algorithme, on obtient un encadrement de α : $2,4375 < \alpha < 2,5$

6.
$$e^{\frac{t}{39}} + e^{-\frac{t}{39}} - 4\frac{t}{39} - 2 = 0 \iff e^x + e^{-x} - 4x - 2 = 0 \text{ avec } x = \frac{t}{39}$$

Cette équation a une unique solution α et $\alpha = \frac{t}{39} \iff t = 39\alpha$ donc la hauteur de l'arche est $2t = 78\alpha$

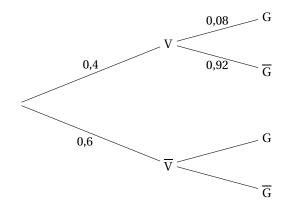
$$2,4375 < \alpha < 2,5 \iff 190,125 < 78\alpha < 195$$

donc la hauteur de l'arche est comprise entre 190 et 195 mètres.

EXERCICE 2

Partie A

- 1. **a.** P(G) = 0.2 car 20% de la population a contracté la grippe.
 - **b.** On obtient:



2. On calcule $P(G \cap V) = 0.4 \times 0.08 = 0.032$ soit 3,2% de chances que la personne ait contractée la grippe et soit vaccinée.

3. On calcule
$$P_{\overline{V}}(G) = \frac{P(\overline{V} \cap G)}{P(\overline{V})}$$

D'après la formule des probabilités totales, $P(V \cap G) + P(\overline{V} \cap G) = P(G)$.

Donc
$$P(\overline{V} \cap G) = P(G) - P(V \cap G) = 0.2 - 0.032 = 0.168 \text{ puis } P_{\overline{V}}(G) = \frac{0.168}{0.6} = 0.28.$$

La probabilité qu'une personne non vaccinée ait contracté la grippe est égale à 0,28.

Partie B

1. Il s'agit de *n* expériences aléatoires identiques et indépendantes à 2 issues (la personne est vaccinée ou non) avec une probabilité de succès de 0,4.

La variable aléatoire X compte le nombre de succès donc X suit la loi binomiale $\mathcal{B}(n; 0,4)$.

- **2.** Avec la loi $\mathcal{B}(40;0,4)$
 - **a.** $P(X = 15) \approx 0.123$
 - **b.** $P(X \ge 20) = 1 P(X < 20) = 1 P(X \le 19) \approx 0.130$

3. On calcule
$$P(1450 < X < 1550) = P\left(\frac{1450 - 1500}{30} < Z < \frac{1550 - 1500}{30}\right) = P\left(\frac{-5}{3} < Z < \frac{5}{3}\right) \approx 0.904$$

EXERCICE 3

Partie A

1. **a.** (EA) \perp (ABC) donc (EA) est la hauteur issue de E dans le tétraèdre ABCE.

(CB) \perp (ABE) donc (CB) est la hauteur issue de C dans le tétraèdre ABCE.

b. Les droites (EA) et (BC) sont non coplanaires donc non sécantes.

Avec deux hauteurs non sécantes, il est impossible d'avoir 4 hauteurs concourantes!

2. a. x - y + z = 0 est bien l'équation cartésienne d'un plan donc je vérifie que les points A, C et H appartiennent bien à ce plan :

$$A(0; 0; 0)$$
 donc $x_A - y_A + z_A = 0$

C(1; 1; 0) donc
$$x_C - y_C + z_C = 1 - 1 - 0 = 0$$

$$H(0; 1; 1)$$
 donc $x_H - y_H + z_H = 0 - 1 + 1 = 0$

- **b.** F(1; 0; 1) et D(0; 1; 0) donc \overrightarrow{DF} (1; −1; 1) qui est bien un vecteur normal au plan d'après les coefficients de l'équation cartésienne donc (FD) \bot (ACH) puis (FD) est bien la hauteur issue de F du tétraèdre ACHE
- **c.** Par analogie, on en déduit que (AG) est la hauteur issue de A, (CE) est la hauteur issue de H et (HB) est la hauteur issue de H.

D'après l'énoncé, les 4 hauteurs correspondent aux « grandes diagonales » du cube et sont donc concourantes.

Partie B

- a. (MK) est orthogonale au plan (NPQ) donc d'après le théorème de la porte, (MK) est orthogonale à toute droite de ce plan; en particulier, (MK) ⊥ (PQ).
 - **b.** On a montré que (PQ) est orthogonale à (NK) et (MK) qui sont deux droites sécantes du plan (MNK) donc par définition, (PQ) est orthogonale au plan (MNK).
- 2. (PQ) est orthogonale au plan (MNK) donc d'après le théorème de la porte, (PQ) est orthogonale à toute droite de ce plan; en particulier, (PQ) ⊥ (MN).

Partie C

$$\overrightarrow{RS}(4; -1; -4)$$
 $\overrightarrow{ST}(3; -5; 7)$ $\overrightarrow{TU}(0; 8; -2)$ $\overrightarrow{RU}(7; 2; 1)$ $\overrightarrow{RT}(7; -6; 3)$ $\overrightarrow{SU}(3; 3; 5)$ $\overrightarrow{ST} \cdot \overrightarrow{RU} = 3 \times 7 + (-5) \times 2 + 7 \times 1 = 21 - 10 + 7 \neq 0$ donc (ST) n'est pas orthogonale à (TU).

Avec deux arêtes opposées non orthogonales, ce tétraèdre n'est pas orthocentrique.

EXERCICE 4 OBLIGATOIRE

1. **a.**
$$\frac{\sqrt{3}}{2}e^{-i\frac{\pi}{6}} = \frac{\sqrt{3}}{2}\left(\cos\left(-\frac{\pi}{6}\right) + i\sin\left(-\frac{\pi}{6}\right)\right) = \frac{\sqrt{3}}{2}\left(\frac{\sqrt{3}}{2} - i\frac{1}{2}\right) = \frac{3}{4} - i\frac{\sqrt{3}}{4} = \frac{3 - i\sqrt{3}}{4}$$

b.
$$z_1 = \frac{\sqrt{3}}{2} e^{-i\frac{\pi}{6}} z_0 = \frac{\sqrt{3}}{2} e^{-i\frac{\pi}{6}} \times 8 \operatorname{donc} \left[z_1 = 4\sqrt{3} e^{-i\frac{\pi}{6}} \right]$$

$$z_2 = \frac{\sqrt{3}}{2} e^{-i\frac{\pi}{6}} z_1 = \frac{\sqrt{3}}{2} e^{-i\frac{\pi}{6}} \times 4\sqrt{3} e^{-i\frac{\pi}{6}} = 6 e^{-i\frac{2\pi}{6}} \text{ donc } \boxed{z_2 = 6 e^{-i\frac{\pi}{3}}}$$

$$z_3 = \frac{\sqrt{3}}{2} e^{-i\frac{\pi}{6}} z_2 = \frac{\sqrt{3}}{2} e^{-i\frac{\pi}{6}} \times 6 e^{-i\frac{\pi}{3}} = 3\sqrt{3} e^{-i\frac{3\pi}{6}} \text{ donc } z_3 = 3\sqrt{3} e^{-i\frac{\pi}{2}}$$

 $arg(z_3) = \frac{-\pi}{2}$ donc z_3 est un imaginaire pur dont la partie imaginaire est négative et

$$\operatorname{Im}(z_3) = -3\sqrt{3}$$

c. Figure représentation des points A_0 , A_1 , A_2 , A_3

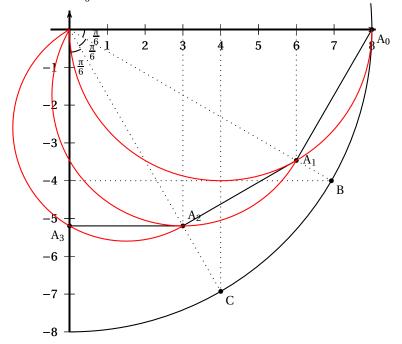
La relation $z_{n+1} = \frac{\sqrt{3}}{2} e^{-i\frac{\pi}{6}} z_n$ montre en prenant les arguments que

$$\arg(z_{n+1}) = \arg\left(\frac{\sqrt{3}}{2}e^{-i\frac{\pi}{6}}\right) + \arg(z_n). \text{ Or } \arg\left(\frac{\sqrt{3}}{2}e^{-i\frac{\pi}{6}}\right) = -\frac{\pi}{6}.$$

On a donc pour tout $n \in \mathbb{N}$, $(\overrightarrow{OA_n}, \overrightarrow{OA_{n+1}}) = -\frac{\pi}{6}$.

On a donc
$$(\overrightarrow{OA_0}, \overrightarrow{OA_1}) = -\frac{\pi}{6}$$
, puis $(\overrightarrow{OA_0}, \overrightarrow{OA_2}) = -\frac{\pi}{3}$ et $(\overrightarrow{OA_0}, \overrightarrow{OA_3}) = -\frac{\pi}{2}$.

- A₀ a pour affixe 8;
- On sait que $\sin -\frac{\pi}{6} = -\frac{1}{2}$. On trace donc l'horizontale partant du point de coordonnées (0 ; -4) qui coupe le cercle de centre O de rayon 8 en un point B d'abscisse positive. La droite verticale d'équation x = 6 coupe OB en A_1 .
- On sait que $\cos -\frac{\pi}{3} = \frac{1}{2}$. On trace donc la verticale ale partant du point de coordonnées (4 ; 0) qui coupe le cercle de centre O de rayon 8 en un point C d'ordonnée négative. La droite verticale d'équation x = 3 coupe OC en A_2 .
- Enfin A₃ est le projeté orthogonal de A₂ sur l'axe des ordonnées puisque $OA_3 = \frac{\sqrt{3}}{2}OA_2$ ou encore $OA_3 = \cos \frac{\pi}{6}OA_2$.



Remarque:

Puisque que pour tout naturel n, $OA_{n+1} = \cos \frac{\pi}{6} OA_n$, le point A_{n+} est la projeté orthogonal de A_n sur la droite OA_{n+1} .

 A_1 est donc le point d'intersection de la droite (OB) avec le demi-cercle de diamètre $[OA_0]$ contenant les points d'ordonnée négative.

 A_2 est le point d'intersection de la droite (OC) avec le demi-cercle de diamètre $[OA_1]$. (voir les demi-cercles tracés en rouge)

 A_3 est le point d'intersection de l'axe des ordonnées avec le demi-cercle de diamètre $[OA_2]$.

2. a. *Initialisation* $z_0 = 8 \times 1 \times 1 = 8$ donc la propriété est vraie pour n = 0.

Hérédité : On suppose que pour $n \geqslant 0$, $z_n = 8 \times \left(\frac{\sqrt{3}}{2}\right)^n e^{-i\frac{n\pi}{6}}$ et on va montrer que

$$z_{n+1} = 8 \times \left(\frac{\sqrt{3}}{2}\right)^{n+1} e^{-i\frac{(n+1)\pi}{6}}$$

On a
$$z_{n+1} = \frac{\sqrt{3}}{2} z_n = \frac{\sqrt{3}}{2} e^{-i\frac{\pi}{6}} \times 8 \times \left(\frac{\sqrt{3}}{2}\right)^n e^{-i\frac{n\pi}{6}}$$
 (par hypothèse de récurrence).

$$\operatorname{Donc} z_{n+1} = 8 \times \left(\frac{\sqrt{3}}{2}\right)^{n+1} \operatorname{e}^{-\mathrm{i}\frac{(n+1)\pi}{6}} \ (en \ utilisant \ la \ propriété \ a^n \times a = a^{n+1} \ pour \ tout \ nombre réel \ a) \ .$$

Donc la propriété est héréditaire.

La propriété est vraie au rang 0, et si elle est vraie au rang $n \ge 0$, elle l'est aussi au rang n+1

Conclusion : d'après le principe de récurrence la propriété est vraie pour tout entier naturel n.

b. On a donc
$$u_n = |z_n| = 8 \times \left(\frac{\sqrt{3}}{2}\right)^n$$

Il s'agit d'une suite géométrique de premier terme $u_0 = 8$ et de raison $\frac{\sqrt{3}}{2}$.

$$0 < \frac{\sqrt{3}}{2} < 1 \text{ donc } \lim_{n \to +\infty} \left(\frac{\sqrt{3}}{2}\right)^n = 0 \text{ puis } \boxed{\lim_{n \to +\infty} u_n = 8 \times 0 = 0}$$

3. **a.**
$$\frac{z_{k+1} - z_k}{z_{k+1}} = \frac{\frac{3 - i\sqrt{3}}{4} z_k - z_k}{\frac{3 - i\sqrt{3}}{4} z_k} = \frac{\cancel{Z} \left(\frac{3 - i\sqrt{3}}{4} - 1\right)}{\frac{3 - i\sqrt{3}}{4} \cancel{Z} \left(\frac{3 - i\sqrt{3}}{4} - 1\right)} = \frac{\frac{3 - i\sqrt{3}}{4} - 1}{\frac{3 - i\sqrt{3}}{4}} = \frac{-1 - i\sqrt{3}}{4} \times \frac{4}{3 - i\sqrt{3}} = \frac{-1 - i\sqrt{3}}{3 - i\sqrt{3}}$$

On multiplie par le conjugué du dénominateur :

$$\frac{z_{k+1} - z_k}{z_{k+1}} = \frac{(-1 - i\sqrt{3})(3 + i\sqrt{3})}{(3 - i\sqrt{3})(3 + i\sqrt{3})} = \frac{-3 - i\sqrt{3} - 3i\sqrt{3} + 3}{9 + 3} = \frac{-4i\sqrt{3} \times \sqrt{3}}{12 \times \sqrt{3}} = \frac{-12i}{12\sqrt{3}} = -\frac{1}{\sqrt{3}}i$$
On a donc $\left| \frac{z_{k+1} - z_k}{z_{k+1}} \right| = \left| -\frac{1}{\sqrt{3}}i \right| \iff \frac{|z_{k+1} - z_k|}{|z_{k+1}|} = \frac{1}{\sqrt{3}} \iff \frac{A_k A_{k+1}}{OA_{k+1}} = \frac{1}{\sqrt{3}} \Leftrightarrow A_k A_{k+1} = \frac{1}{\sqrt{3}}OA_{k+1}.$

b. D'après la question précédente, pour tout entier naturel *k*,

$$A_{k}A_{k+1} = \frac{1}{\sqrt{3}}OA_{k+1} = \frac{1}{\sqrt{3}}|z_{k+1}| = \frac{1}{\sqrt{3}} \times 8 \times \left(\frac{\sqrt{3}}{2}\right)^{k+1} = \frac{8}{\sqrt{3}}\left(\frac{\sqrt{3}}{2}\right)^{k+1}$$

$$Donc \,\ell_{n} = \frac{8}{\sqrt{3}}\left(\frac{\sqrt{3}}{2}\right)^{1} + \frac{8}{\sqrt{3}}\left(\frac{\sqrt{3}}{2}\right)^{2} + \dots + \frac{8}{\sqrt{3}}\left(\frac{\sqrt{3}}{2}\right)^{n} = \frac{8}{\sqrt{3}} \times \frac{\sqrt{3}}{2}\left(1 + \left(\frac{\sqrt{3}}{2}\right)^{1} + \dots + \left(\frac{\sqrt{3}}{2}\right)^{n-1}\right)$$

$$Puis \,\ell_{n} = 4 \times \frac{1 - \left(\frac{\sqrt{3}}{2}\right)^{n}}{1 - \left(\frac{\sqrt{3}}{2}\right)} = 4 \times \frac{1 - \left(\frac{\sqrt{3}}{2}\right)^{n}}{\frac{2 - \sqrt{3}}{2}} = \frac{8}{2 - \sqrt{3}} \times \left(1 - \left(\frac{\sqrt{3}}{2}\right)^{n}\right)$$

Pour finir,
$$\lim_{n \to +\infty} \ell_n = \frac{8}{2 - \sqrt{3}} (1 - 0) = \frac{8}{2 - \sqrt{3}} \approx 29,86$$

EXERCICE 4 SPÉCIALITÉ

Partie A

$$x^2 - 8v^2 = 1$$
. (E)

1. Le couple (1; 0) est solution; avec y = 1, on trouve aussitôt x = 3. Le couple (3; 1) est aussi solution.

2.

$$x_0 = 1, y_0 = 0$$
, et pour tout entier naturel n , $\begin{pmatrix} x_{n+1} \\ y_{n+1} \end{pmatrix} = A \begin{pmatrix} x_n \\ y_n \end{pmatrix}$.

a. Initialisation

On a vu que le couple $(x_0 = 1; y_0 = 0)$ est un couple solution. Donc la proposition est vraie au rang 0.

Hérédité

Soit $n \in \mathbb{N}$ et supposons que le couple $(x_n; y_n)$ est solution de l'équation (E), c'est-à-dire que $x_n^2 - 8y_n^2 = 1$.

Alors
$$\begin{pmatrix} x_{n+1} \\ y_{n+1} \end{pmatrix} = A \begin{pmatrix} x_n \\ y_n \end{pmatrix} = \begin{pmatrix} 3 & 8 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} x_n \\ y_n \end{pmatrix} = \begin{pmatrix} 3x_n + 8y_n \\ x_n + 3y_n \end{pmatrix}$$

Donc $x_{n+1} = 3x_n + 8y_n$ et $y_{n+1} = x_n + 3y_n$.

Calculons la différence :

$$x_{n+1}^2 - 8y_{n+1}^2 = (3x_n + 8y_n)^2 - 8(x_n + 3y_n)^2 = 9x_n^2 64y_n^2 + 48x_ny_n - 8(x_n^2 + 9y_n^2 + 6x_ny_n) = 9x_n^2 + 64y_n^2 + 48x_ny_n - 8x_n^2 - 72y_n^2 - 48x_ny_n = x_n - 8y_n^2 = 1$$
, d'après l'hypothèse de récurrence. Le couple $(x_{n+1}; y_{n+1})$ est aussi un couple solution.

On a montré que la proposition est vraie au rang 0 et que si elle est vraie à un rang $n \in \mathbb{N}$ elle l'est aussi au rang n+1: d'après le principe de récurrence on a montré que pour tout naturel n, le couple $(x_n; y_n)$ est une solution de (E).

b. On calcule la différence :

 $x_{n+1} - x_n = 3x_n + 8y_n - x_n = 2x_n + 8y_n$; cette somme est positive car on suppose que $x_n > 0$ et $y_n \in \mathbb{N}$, $y_n \ge 0$.

On a donc $x_{n+1} - x_n > 0 \iff x_{n+1} > x_n$: la suite (x_n) est donc strictement croissante.

3. On a vu qu'il existe au moins un couple $(x_0; y_0)$ solution de (E) et on a démontré que pour chaque couple solution $(x_n; y_n)$ le couple $(x_{n+1}; y_{n+1})$ est aussi solution; comme on a montré que $x_{n+1} > x_n$ le couple $(x_{n+1}; y_{n+1})$ est une solution différente.

Conclusion : l'équation (E) a une infinité de solutions, les premiers termes étant de plus en plus grands. Les premiers couples sont (1;0), (3; 1), (17; 6), ...

Partie B

Un entier naturel n est appelé un nombre puissant lorsque, pour tout diviseur premier p de n, p^2 divise n.

- 1. On a $8 = 2^3$; 8 est divisible par 2 qui est premier et aussi par 2^2 : il est puissant;
 - On a $9 = 3^2$; 9 est divisible par 3 qui est premier et aussi par 3^2 : il est puissant; 8 et 9 sont deux naturels consécutifs inférieurs à 10 puissants.

2. On suppose que $ab \neq 0$, que $a \neq b$ et $a \geqslant 1$.

Tout diviseur premier de n est un diviseur de a ou de b.

- Si p est un diviseur premier de a, alors il existe $a' \in \mathbb{N}$ tel que $a = p \times a'$, donc n s'écrit $n = p^2 a'^2 b^3$, donc p^2 divise n;
- Si p est un diviseur premier de b, alors il existe $b' \in \mathbb{N}$ tel que $b = p \times b'$, donc n s'écrit $n = a^2 p^3 (b')^3 = p^2 p a^2 (b')^3$, donc p^2 divise n.

Conclusion n est puissant.

- 3. Il est évident que $x^2 1$ précède x^2 ; les deux nombres sont consécutifs;
 - Puisque (x; y) est un couple solution de l'équation (E), on a donc $x^2 8y^2 = 1 \iff x^2 1 = 8y^2$ qui est un nombre puissant puisque divisible par 2 premier et son carré 4.

D'autre part x supérieur à 1 a au moins un diviseur premier p; il existe $q \in \mathbb{N}$ tel que x = pq et par conséquent $x^2 = p^2q^2$ qui est puissant puisque divisible par le premier p et le carré de ce premier.

Conclusion : si (x; y) est un couple solution de l'équation (E), $x^2 - 1$ et x^2 sont deux naturels consécutifs puissants.

On a vu que 8 et 9 sont consécutifs et puissants.

4. On a vu l'équation (E) a une infinité de couples solutions.

On a démontré que pour chaque couple (x; y) solution de (E), les nombres $x^2 - 1$ et x^2 sont consécutifs et puissants et que la suite des premiers termes est strictement croissante.

Il existe donc une infinité de naturels consécutifs et puissants.

La calculatrice donne $(x_3; y_3) = (99; 35)$.

D'après la question précédente 99^2 et $99^2 - 1$ sont deux nombres consécutifs puissants

On a $99^2 = (100 - 1)^2 = 10000 - 200 + 1 = 9801$ et $99^2 - 1 = 9800$.

$$9801 = (9 \times 11)^2 = (3^2 \times 11)^2 = 3^4 \times 11^2.$$

9801 est effectivement divisible par 3 et par 3², par 11 et 11²;

 $9801 - 1 = 9800 = 98 \times 100 = 2 \times 49 \times (2 \times 5)^2 = 2^3 \times 5^2 \times 7^2$ est divisible par 2 et par 2^2 , par 5 et 5^2 par 7 et 7^2 .

9800 et 9801 sont des naturels consécutifs et puissants supérieurs à 2018.