Baccalauréat s

Session 2016

Épreuve : **Mathématiques**

1 Exercice 1

Partie A

Attention à une confusion possible entre S et \bar{S} !

On applique la formule des probabilités totales :

$$\begin{array}{ll} p(\bar{S}) &=& p(\bar{S}\cap A) + p(\bar{S}\cap B) \\ &=& p_A(\bar{S}) \times p(A) + p_B(\bar{S}) \times p(B) \\ &=& 0, 20 \times 0, 40 + 0, 05 \times 0, 60 \\ &=& 0, 08 + 0, 03 \\ &=& 0, 11. \end{array}$$

On en déduit :

$$p(S) = 1 - p(\bar{S}) = 0.89$$

2) On demande :

$$p_S(A) = \frac{p(A \cap S)}{p(S)}$$
.

Reste à calculer $p(A \cap S)$: On peut utiliser les probabilités totales : $p(A \cap S) + p(A \cap \bar{S}) = p(A)$:

$$p(A \cap S) = p(A) - p(A \cap \bar{S})$$

= 0, 40 - 0, 08 (calculé au 1)
= 0, 32.

Ainsi:

$$p_S(A) = \frac{0,32}{p(S)}$$

= $\frac{0,32}{0,89}$
 ≈ 0.36

La probabilité demandée est donc 36%.

Partie B

On vérifie que $n \ge 30$ (ici n = 400), $n \neq 5$ (ici $n \neq 368$) et $n \neq 100$ (ici $n \neq 100$).

1) On calcule $\frac{1}{\sqrt{n}} = \frac{1}{20} = 0,05$.

On en déduit que $p \in [0, 87; 0, 99]$ au taux de confiance de 95%.

Ici l'amplitude est 0,99-0,87=0,16.

On souhaite que l'amplitude de $\left[\,f-\frac{1}{\sqrt{n}};\,f+\frac{1}{\sqrt{n}}\,\right]$ soit à présent 0,02.

Pour cela, on résoud : $\frac{1}{\sqrt{n}} = 0,01 \Leftrightarrow \boxed{n = 10000}$

Partie C

1)a) $p(T \leq a)$ est égal à l'aire sous la courbe C entre les abscisses x = 0 et x = a:

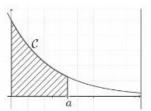


Figure 1. Illustration de $p(T \leq a)$.

1)b) Calcul de l'intégrale :

$$\begin{split} p(T\leqslant t) &= \int_0^t f(u)\mathrm{d}u \\ &= \int_0^t \lambda \, e^{-\lambda u}\,\mathrm{d}u \\ &= [-e^{-\lambda u}]_0^t \\ &= 1 - e^{-\lambda t}. \end{split}$$

1)c) On sait que $\lim_{t\to+\infty} e^{-\lambda t} = 0$ (car $\lambda > 0$).

Ainsi, $\lim_{t\to +\infty} P(T\leqslant t) = 1$.

2) On suppose donc que $\,1-e^{-\lambda\,\times 7}=0,5.$ On résoud cela en λ :

$$\begin{split} 1 - e^{-\lambda \times 7} &= 0, 5 &\Leftrightarrow e^{-\lambda \times 7} &= 0, 5 \\ &\Leftrightarrow -7\lambda = \ln(0, 5) \\ &\Leftrightarrow \boxed{\lambda = \frac{\ln(2)}{7} \approx 0,099} \,. \end{split}$$

3)a) On demande $p(T \ge 5)$.

On remarque que $p(T \ge t) = 1 - p(T \le t) = e^{-\lambda t}$.

Ainsi:

$$\begin{array}{ll} p(T\!\geqslant\!5) \ = \ e^{-0.099\times5} \\ \approx \ 0.61. \end{array}$$

La probabilité demandée est donc 61%.

3)b) On demande $p_{T\geqslant 2}(T\geqslant 7)$. La loi exponentielle étant sans vieillissement, ceci est égal à $p(T\geqslant 5)$ donc au résultat précédent : $\lceil 61\% \rceil$.

L'énoncé ne stipule pas s'il faut redémontrer cela.

Au cas où, voici la démonstration :

$$\begin{array}{ll} p_{T\geqslant 2}(T\geqslant 7) & = & \frac{p(T\geqslant 2\,\cap\,T\geqslant 7)}{p(T\geqslant 2)} \\ & = & \frac{p(T\geqslant 7)}{p(T\geqslant 2)} \\ & = & \frac{e^{-\lambda\times 7}}{e^{-\lambda\times 5}} \\ & = & e^{-\lambda\times 5}. \end{array}$$

3)c)
$$E(T) = \frac{1}{\lambda} \approx [10, 1]$$
.

On peut espérer qu'un composant dure 10,1 années en moyenne.

2 Exercice 2

• Affirmation 1 : fausse

$$\overrightarrow{AB}(2, -2, -2)$$
 et $\overrightarrow{AC}(-2, -2, -2)$

Clairement ces deux vecteurs ne sont pas colinéaires.

• Affirmation 2 : vraie

Puisqu'on a déjà \overrightarrow{AB} et \overrightarrow{AC} , calculons leur produit scalaire avec \overrightarrow{n} :

$$\vec{n} \cdot \vec{A}\vec{B} = 0 + 1 \times (-2) + (-1) \times (-2) = 0.$$

 $\vec{n} \cdot \vec{A}\vec{C} = 0 + 1 \times (-2) + (-1) \times (-2) = 0.$

On a bien $\vec{n} \perp \vec{A}\vec{B}$ et $\vec{n} \perp \vec{A}\vec{C}$.

• Affirmation 3 : vraie

Soit $I = \min[BC]$: on a

Vérifions que $I \in (EF)$:

 $\overrightarrow{EF}(-1,-1,1)$ et $\overrightarrow{EI}(2,2,-2)$. On a bien $\overrightarrow{EI}=-2\overrightarrow{EF}$ donc oui, I,E,F alignés.

Vérifions que $I \in (ABC)$:

L'équation de (ABC) est (on utilise le vecteur \vec{n}) :

$$y-z=y_A-z_A \iff y-z=-1.$$

Oui, les coordonnées de I vérifient cette équation.

Affirmation 4 : fausse

On donne des équations paramétriques de ces deux droites :

$$(AB) : \begin{cases} x = 1 + 2t \\ y = 2 - 2t , t \in \mathbb{R}. \\ z = 3 - 2t \end{cases}$$

$$(CD) : \begin{cases} x = -1 + 3u \\ y = u \\ z = 1 - 2u \end{cases}, u \in \mathbb{R}.$$

On résoud :

$$\begin{cases} 1+2t \\ 2-2t \\ 3-2t \end{cases} = \begin{cases} -1+3u \\ u \\ 1-2u \end{cases} \Leftrightarrow \begin{cases} 1+2t=-1+3u \\ 2-2t=u \\ 3-2t=1-2u \end{cases}$$

$$\Leftrightarrow \begin{cases} 2t=3u-2 \\ 2t=-u+2 \\ 2t=2u+2 \end{cases}$$

On trouve la condition nécessaire 3u-2=-u+2=2u+2, qui n'a pas de solution en u.

3 Exercice 3

Partie A

1) On doit résoudre :

$$\begin{split} f(x) = x &\Leftrightarrow & \ln(x^2 + 1) = 0 \\ &\Leftrightarrow & x^2 + 1 = 1 \\ &\Leftrightarrow & \boxed{x = 0}. \end{split}$$

- 2) Justifions donc:
 - Lorsque x → -∞, x² + 1 tend vers +∞ donc son ln tend vers +∞, donc -ln(x² + 1) tend vers -∞. Par somme, on a donc bien lim f = -∞.
 - $\bullet \quad f'(x) = 1 \frac{2x}{x^2+1} = \frac{x^2-2x+1}{x^2+1} = \frac{(x-1)^2}{x^2+1} \text{ toujours positif }; \text{ et nul pour } (x-1)^2 = 0 \Leftrightarrow x = 1.$

3) Sur [0;1], f est croissante donc f([0;1]) = [f(0); f(1)] = [0; f(1)].

De plus, f(0) = 0 et $f(1) = 1 - \ln(2)$.

Vu que 1 < 2 < e, on a $0 < \ln(2) < 1$ donc aussi $0 < 1 - \ln(2) < 1$.

Ainsi, $f([0;1]) \subset [0;1]$ ce qu'il fallait montrer.

a) f étant croissante de limite +∞ en +∞, elle peut atteindre n'importe quelle ordonnée A fixée.

Cet algorithme prend une valeur de A et renvoie la plus petite valeur entière de N telle que $f(N) \ge A$.

4) b) La question revient à résoudre :

$$f(x) = 100 \Leftrightarrow x - \ln(1 + x^2) = 100.$$

On doit utiliser les tableurs (TABLE) de nos calculatrices.

Voici un extrait de la mienne :

\boldsymbol{x}	f(x)
106.0000000000000	96.6730328160922
107.0000000000000	97.6542549910177
108.000000000000	98.6356518155446
109.0000000000000	99.6172200710844
110.0000000000000	100.598956627202
111.0000000000000	101.580858438426

On constate que ici l'algorithme renverra 110.

Remarque: pour N=109, on a $N-\ln(N^2+1)<100$ donc la boucle se fait et N prend la valeur N+1 donc N=110. Ensuite, le test est négatif donc la boucle ne se fait pas. C'est pourquoi l'algorithme renvoie la valeur 110 et non pas 109.

Partie B

Déjà u₀ ∈ [0; 1] puisque u₀ = 1.

Ensuite, l'implication $x \in [0;1] \Rightarrow f(x) \in [0;1]$ démontrée plus haut donne l'hérédité, car elle montre que si $u_n \in [0;1]$ alors $u_{n+1} = f(u_n)$ est aussi dans [0;1].

f est croissante donc (u_n) est monotone.

Vu que $u_1 \leq u_0$ (puisque $u_0 = 1$ et $u_1 \in [0; 1]$) on a (u_n) décroissante.

- (u_n) est décroissante minorée donc convergente.
- ℓ = 0 (d'après la question 1 de la partie A).

Pour info voici les escaliers de la suite (u_n) :

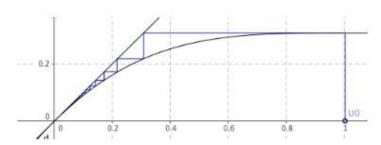


Figure 2.

4 Exercice 4

1)
$$\tan(\alpha) = \frac{EA}{ET} = \frac{25}{x}$$
. De même, $\tan(\beta) = \frac{30, 6}{x}$.

2) Posons $f(x) = \tan x$.

Déjà la définition donnée est valable dans $[0; \pi/2[$ car dans cet intervalle, on a $\cos(x) \neq 0$.

Ensuite, par dérivation d'un quotient :

$$f'(x) = \frac{\cos^2 x + \sin^2 x}{\cos^2 x}$$
$$= \frac{1}{\cos^2 x} > 0.$$

Clairement γ = β - α donc :

$$\begin{split} \tan(\gamma) &= \tan(\beta - \alpha) \\ &= \frac{\tan(\beta) - \tan(a)}{1 + \tan(\beta)\tan(\alpha)} \\ &= \frac{\frac{5,6}{x}}{1 + \frac{30,6 \times 25}{x^2}} \text{ on va multiplier par } x^2 \text{ en haut et en bas :} \\ &= \frac{5,6 \, x}{x^2 + 30,6 \times 25}. \end{split}$$

Vu que $30, 6 \times 25 = 765$ on a bien le résultat demandé.

4) On cherche à maximaliser $\frac{5,6x}{x^2+765}$. En divisant par x en haut et en bas, on voit que cette quantité peut s'écrire $\frac{5,6}{x+\frac{765}{x}}$. D'après les propriétés d'un inverse, maximaliser $\frac{5,6}{x+\frac{765}{x}}$ revient donc à minimaliser $x+\frac{765}{x}$.

Pour ce faire, on dérive la fonction $u(x) = x + \frac{765}{x}$, on trouve :

$$u'(x) = 1 - \frac{765}{x^2}.$$

On résoud :

$$\begin{array}{ll} u'(x) = 0 & \Leftrightarrow & x^2 = 765 \\ & \Leftrightarrow & x \approx 27,66. \end{array}$$

Ainsi, la valeur de x optimale au mètre près est : $x_0=28$. Calculons l'angle correspondant :

$$\begin{array}{rcl} u(x_0) & = & 28 + \frac{765}{28} \approx 55, 32 \\ \\ \frac{5,6}{u(x_0)} & = & \frac{5,6}{55,32} \approx 0, 101, \end{array}$$

dont on calcule l'arctangente ; on trouve $\gamma \approx 0, 10$ rad (environ 6°).