Définition du produit scalaire

I) Norme d'un vecteur:

1) Définition:

Soit \vec{u} un vecteur, A et B deux points tel que $\vec{u} = \overrightarrow{AB}$.

On appelle norme de \vec{u} , noté $||\vec{u}||$, la distance AB.

$$\|\vec{u}\| = \|\overrightarrow{AB}\| = AB$$

Lorsque $\|\vec{u}\| = 1$, on dit que le vecteur est unitaire.

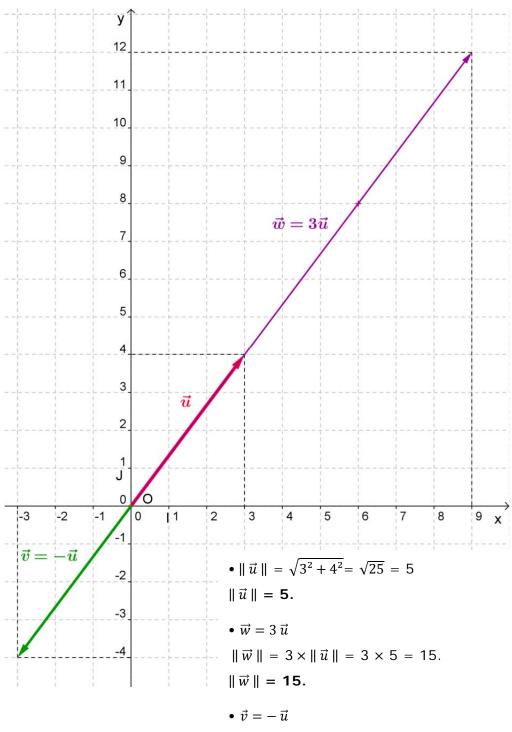
2) Propriétés:

Dans un repère orthonormé, le vecteur \vec{u} a pour coordonnées (x; y).

Dans ce cas:

- $\bullet \parallel \vec{u} \parallel = \sqrt{x^2 + y^2}$
- Pour tout réel λ , et tout vecteur \vec{u} alors $\|\lambda \vec{u}\| = |\lambda| \times \|\vec{u}\|$

Exemple:



•
$$\vec{v} = -\vec{u}$$

 $\|\vec{v}\| = 1 \times \|\vec{u}\| = 1 \times 5 = 5.$
 $\|\vec{v}\| = 5.$

II) Définition du produit scalaire :

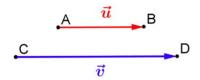
1) Définition:

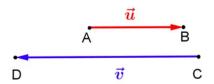
Si \vec{u} et \vec{v} sont deux vecteurs du plan.

Le produit scalaire de deux vecteurs \vec{u} et \vec{v} est le nombre réel, noté : \vec{u} . \vec{v} (lire « \vec{u} scalaire \vec{v} » définie par :

- \vec{u} . $\vec{v} = ||\vec{u}|| \times ||\vec{v}|| \times \cos(\vec{u}; \vec{v})$ lorsque les vecteurs \vec{u} et \vec{v} sont tous les deux non nuls
- \vec{u} . \vec{v} = 0 lorsqu'au moins l'un des vecteurs \vec{u} et \vec{v} est nul.

Remarques:





• Si $\vec{u} = \overrightarrow{AB}$ et $\vec{v} = \overrightarrow{CD}$ sont colinéaires et de même sens, alors $(\vec{u}, \vec{v}) = 0$, dans ce cas $\cos(\vec{u}, \vec{v}) = 1$ et nous obtenons donc:

 $\overrightarrow{AB} \cdot \overrightarrow{CD} = AB \times CD$

Ou: $\vec{u} \cdot \vec{v} = ||\vec{u}|| \times ||\vec{v}||$

• Si $\vec{u} = \overrightarrow{AB}$ et $\vec{v} = \overrightarrow{CD}$ sont colinéaires et de sens contraires, alors $(\vec{u}, \vec{v}) = \pi$ dans ce cas $\cos(\vec{u}, \vec{v}) = -1$ et nous obtenons donc: $\overrightarrow{AB} \cdot \overrightarrow{CD} = -AB \times CD$

Ou: $\vec{u} \cdot \vec{v} = -\|\vec{u}\| \times \|\vec{v}\|$

Autres remarques:

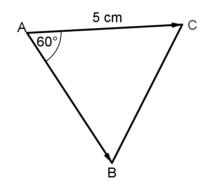
• Par convention: \vec{u} . \vec{u} est noté \vec{u}^2

Ainsi \vec{u} . \vec{u} = \vec{u}^2 = $\|\vec{u}\|^2$

• Lorsque $\vec{u}=0$ ou $\vec{v}=0$ on obtient $\vec{u}\cdot\vec{v}=0$

Exemples:

a) ABC est un triangle équilatéral dont la longueur des côtés est de 5 cm. Calculer \overrightarrow{AB} . \overrightarrow{AC} .



$$\overrightarrow{AB} \cdot \overrightarrow{AC} = AB \times AC \times \cos(60^{\circ})$$

= $\frac{1}{2} \times AB \times AC$
= $\frac{1}{2} \times 5^{2} = \frac{25}{2}$

$$\overrightarrow{AB}$$
 . \overrightarrow{AC} = 12,5

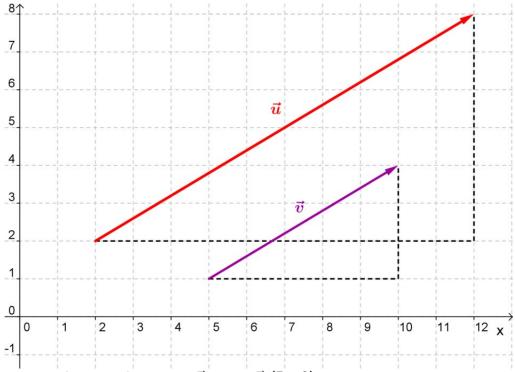
b) Plus généralement, si ABC est un triangle équilatéral dont la longueur des côtés est de a cm alors:

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = AB \times AC \times \cos(60^{\circ}) = \frac{1}{2} \times a \times a$$

= $\frac{1}{2} \times a^{2}$

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = \frac{a^2}{2}$$

c) Déterminer le produit scalaire des deux vecteurs \vec{u} et \vec{v} tracés ci-dessous :



Les coordonnées du vecteur \vec{u} sont : \vec{u} (5 ; 3) Les coordonnées du vecteur \vec{v} sont : \vec{v} (10 ; 6)

$$\|\vec{u}\|^2 = 5^2 + 3^2 = 25 + 9 = 34$$

$$\|\vec{u}\| = \sqrt{34}$$

$$\|\vec{v}\|^2 = 10^2 + 6^2 = 100 + 36 = 136$$
 $\|\vec{v}\| = \sqrt{136}$

$$\|\vec{v}\| = \sqrt{136}$$

 $\vec{v} = 2 \times \vec{u}$ Donc les vecteurs \vec{u} et \vec{v} sont colinéaires et de même sens

Donc $\vec{u} \cdot \vec{v} = ||\vec{u}|| \times ||\vec{v}|| = \sqrt{34} \times \sqrt{136} = \sqrt{4624} = 68$.

III) Différentes formes du produit scalaire :

1) Produit scalaire et coordonnées

Dans un repère orthonormé $(0, \vec{\iota}, \vec{j})$, si deux vecteurs \vec{u} et \vec{v} ont pour coordonnées respectives (x; y) et (x'; y'), alors : $\vec{u} \cdot \vec{v} = xx' + yy'$.

Exemple: Dans un repère $(0, \vec{\iota}, \vec{j})$, les vecteurs \vec{u} et \vec{v} ont pour coordonnées respectives (-2; 5) et (3; 1). Calculons leur produit scalaire.

$$\vec{u} \cdot \vec{v} = (-2) \times 3 + 5 \times 1 = -6 + 5 = -1$$

On obtient donc :

 $\vec{u} \cdot \vec{v} = -1$

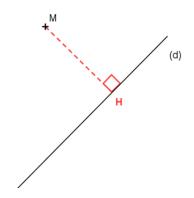
2) Produits scalaires et projection orthogonale

a) Projection orthogonale:

Définition:

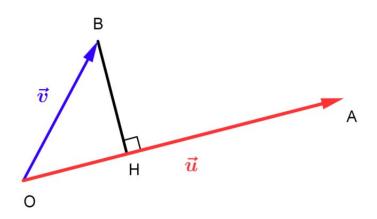
(d) est une droite et M un point du plan.

Le projeté orthogonal de M sur la droite (d) est le point H intersection de la perpendiculaire à (d) passant par le point M et de (d).



b) Produit scalaire et projeté orthogonal

• Les vecteurs \vec{u} et \vec{v} sont non nuls tel que $\vec{u} = \overrightarrow{OA}$ et $\vec{v} = \overrightarrow{OB}$ Alors \vec{u} . $\vec{v} = \overrightarrow{OA}$. \overrightarrow{OH} où H est le projeté orthogonal du point B sur la droite (OA) .

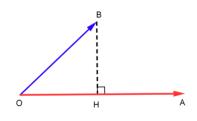


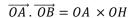
Remarques:

L'angle \widehat{AOB} est aigu

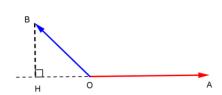
L'angle \widehat{AOB} est droit

L'angle \widehat{AOB} est obtus





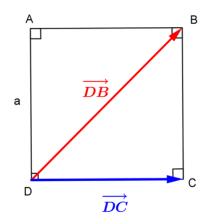
$$\overrightarrow{OA} \cdot \overrightarrow{OB} = 0$$



$$\overrightarrow{OA} \cdot \overrightarrow{OB} = -OA \times OH$$

Exemples:

Exemple 1:



ABCD est un carré dont la longueur des côtés est a cm. Le projeté orthogonal de B sur la droite (DC) est le point C. Donc \overrightarrow{DB} . \overrightarrow{DC} = \overrightarrow{DC} . \overrightarrow{DC} = \overrightarrow{DC}^2 = a^2

Exemple 2:

ABCD est un rectangle de centre O avec AB = 6 cm et AD = 5 cm.

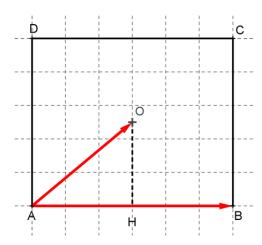
En utilisant les projections orthogonales, calculer les produits scalaires suivants :

$$\overrightarrow{AB}$$
 . \overrightarrow{AO}

$$\overrightarrow{AB}$$
 . \overrightarrow{AD}

$$\overrightarrow{AB}$$
 . \overrightarrow{BD}

Réponses :



D C

Les vecteurs \overrightarrow{AB} et \overrightarrow{AH} sont de

Les vecteurs \overrightarrow{AB} et \overrightarrow{AH} sont orthogonaux.

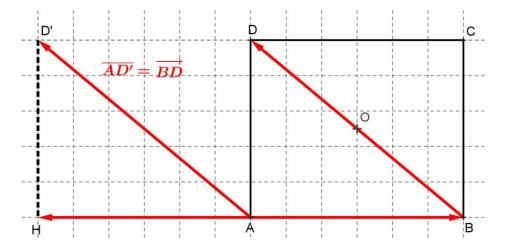
même sens. Donc :

Donc \overrightarrow{AH} est le vecteur nul:

$$\overrightarrow{AB} \cdot \overrightarrow{AO} = AB \times AH = 6 \times 3 = 18$$

$$\overrightarrow{AB} \cdot \overrightarrow{AD} = \mathbf{O}$$

$$\overrightarrow{AB} \cdot \overrightarrow{AO} = 18$$



Dans ce cas, les vecteurs \overrightarrow{AB} et \overrightarrow{AH} sont de sens contraires donc :

$$\overrightarrow{AB} \cdot \overrightarrow{BD} = \overrightarrow{AB} \cdot \overrightarrow{AD}' = -AB \times AH = -6 \times 6 = -36$$

$$\overrightarrow{AB} \cdot \overrightarrow{BD} = -36$$

IV) Exemple d'utilisation des différentes formes du produit scalaire

Exemple:

Dans le plan muni d'un repère orthonormé, on considère les points :

En utilisant les différentes formes du produit scalaire, déterminer la valeur approchée à 0,1 ° près de l'angle \widehat{BAC}

Réponse:

Comme nous connaissons les coordonnées des points A , B et C , nous allons calculer $\overrightarrow{AB}.\overrightarrow{AC}$ grâce à la forme analytique du produit scalaire.

Les coordonnées du vecteur \overrightarrow{AB} sont : $\overrightarrow{AB}(-2 + 6 ; 0 + 2)$ $\overrightarrow{AB}(4 ; 2)$

Les coordonnées du vecteur \overrightarrow{AC} sont : $\overrightarrow{AB}(-2 + 6 ; 4 + 2)$ $\overrightarrow{AB}(4 ; 6)$

Donc: $\overrightarrow{AB}.\overrightarrow{AC} = 4 \times 4 + 2 \times 6 = 28$

 $\overrightarrow{AB}.\overrightarrow{AC} = 28$

Comme nous cherchons la valeur de l'angle \widehat{BAC} , nous allons utiliser la formule du produit scalaire avec les normes et un angle , afin d' avoir une nouvelle expression de $\widehat{AB}.\widehat{AC}$ dont nous connaissons maintenant la valeur.

$$\overrightarrow{AB}.\overrightarrow{AC} = ||\overrightarrow{AB}|| \times ||\overrightarrow{AC}|| \times \cos(\overrightarrow{AB}; \overrightarrow{AC})$$

$$\|\overrightarrow{AB}\| = \sqrt{4^2 + 2^2} = \sqrt{20}$$
 et $\|\overrightarrow{AC}\| = \sqrt{4^2 + 6^2} = \sqrt{52}$

$$\overrightarrow{AB}.\overrightarrow{AC} = \sqrt{20} \times \sqrt{52} \times \cos(\overrightarrow{AB}; \overrightarrow{AC})$$

$$\overrightarrow{AB}.\overrightarrow{AC} = \sqrt{1040} \times \cos(\overrightarrow{AB}; \overrightarrow{AC})$$

Or nous avions trouvé précédemment que : $\overrightarrow{AB}.\overrightarrow{AC} = 28$

Donc
$$\sqrt{1040} \times cos(\overrightarrow{AB}; \overrightarrow{AC}) = 28$$

Donc
$$\cos(\overrightarrow{AB}; \overrightarrow{AC}) = \frac{28}{\sqrt{1040}}$$

La connaissance du cosinus de l'angle $(\overrightarrow{AB}; \overrightarrow{AC})$ ne permet pas de connaitre le sens et la mesure de l'angle orienté $(\overrightarrow{AB}; \overrightarrow{AC})$.

Par contre on peut en déduire la mesure de l'angle géométrique :

$$\widehat{BAC} \approx 75,6^{\circ}$$